Milstein’s type schemes for fractional SDEs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Milstein’s type schemes for fractional SDEs

E|Bt −Bs| = cp|t− s| , s, t ∈ [0, 1], with cp = E(|G|), G ∼ N (0, 1), and, consequently, almost all sample paths of B are Hölder continuous of any order α ∈ (0,H). The study of stochastic differential equations driven by B has been considered by using several methods. For instance, in [22] one uses fractional calculus of same type as in [25]; in [2] one uses rough paths theory introduced in [11...

متن کامل

A Milstein-type scheme without Levy area terms for SDEs driven by fractional Brownian motion

In this article, we study the numerical approximation of stochastic differential equations driven by a multidimensional fractional Brownian motion (fBm) with Hurst parameter greater than 1/3. We introduce an implementable scheme for these equations, which is based on a second order Taylor expansion, where the usual Lévy area terms are replaced by products of increments of the driving fBm. The c...

متن کامل

Customized tamed numerical schemes for SDEs and BSDEs

In this talk we introduce a family of numerical approximations for the stochastic differentialequations (SDEs) with, possibly, no-globally Lipschitz coefficients. We show that for a given Lyapunovfunction V : R → [1,∞) we can construct a suitably tamed Euler scheme that preserves so calledV-stability property of the original SDEs without imposing any restrictions on the time dis...

متن کامل

Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion

In this paper, we derive the exact rate of convergence of some approximation schemes associated to scalar stochastic differential equations driven by a fractional Brownian motion with Hurst index H . We consider two cases. If H > 1/2, the exact rate of convergence of the Euler scheme is determined. We show that the error of the Euler scheme converges almost surely to a random variable, which in...

متن کامل

Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion

We demonstrate that stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H > 1 2 have similar ergodic properties as SDEs driven by standard Brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems satisfy a suitable version of the strong Feller property and we conclude that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

سال: 2009

ISSN: 0246-0203

DOI: 10.1214/08-aihp196